Skip to Main Content (Press Enter)

Logo UNIBG
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNIBG

|

UNI-FIND

unibg.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

A comparison of genetic algorithms and particle swarm optimization for parameter estimation in stochastic biochemical systems

Contributo in Atti di convegno
Data di Pubblicazione:
2009
Citazione:
(2009). A comparison of genetic algorithms and particle swarm optimization for parameter estimation in stochastic biochemical systems . Retrieved from http://hdl.handle.net/10446/109186
Abstract:
The modelling of biochemical systems requires the knowledge of several quantitative parameters (e.g. reaction rates) which are often hard to measure in laboratory experiments. Furthermore, when the system involves small numbers of molecules, the modelling approach should also take into account the effects of randomness on the system dynamics. In this paper, we tackle the problem of estimating the unknown parameters of stochastic biochemical systems by means of two optimization heuristics, genetic algorithms and particle swarm optimization. Their performances are tested and compared on two basic kinetics schemes: the Michaelis-Menten equation and the Brussellator. The experimental results suggest that particle swarm optimization is a suitable method for this problem. The set of parameters estimated by particle swarm optimization allows us to reliably reconstruct the dynamics of the Michaelis-Menten system and of the Brussellator in the oscillating regime.
Tipologia CRIS:
1.4.01 Contributi in atti di convegno - Conference presentations
Elenco autori:
Besozzi, Daniela; Cazzaniga, Paolo; Mauri, Giancarlo; Pescini, Dario; Vanneschi, Leonardo
Autori di Ateneo:
CAZZANIGA Paolo
Link alla scheda completa:
https://aisberg.unibg.it/handle/10446/109186
Titolo del libro:
EvoBIO: Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics: 7th European Conference, EvoBIO 2009 Tübingen, Germany, April 15-17, 2009: Proceedings
Pubblicato in:
LECTURE NOTES IN COMPUTER SCIENCE
Series
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.8.0.1