Skip to Main Content (Press Enter)

Logo UNIBG
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNIBG

|

UNI-FIND

unibg.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

Evaluation of scenario reduction algorithms with nested distance

Articolo
Data di Pubblicazione:
2020
Citazione:
(2020). Evaluation of scenario reduction algorithms with nested distance [journal article - articolo]. In COMPUTATIONAL MANAGEMENT SCIENCE. Retrieved from http://hdl.handle.net/10446/163698
Abstract:
Multistage stochastic optimization is used to solve many real-life problems where decisions are taken at multiple times. Such problems need the representation of stochastic processes, which are usually approximated by scenario trees. In this article, we implement seven scenario reduction algorithms: three based on random extraction, named Random, and four based on specific distance measures, named Distance-based. Three of the latter are well known in literature while the fourth is a new approach, namely nodal clustering. We compare all the algorithms in terms of computational cost and information cost. The computational cost is measured by the time needed for the reduction, while the information cost is measured by the nested distance between the original and the reduced tree. Moreover, we also formulate and solve a multistage stochastic portfolio selection problem to measure the distance between the optimal solutions and between the optimal objective values of the original and the reduced tree.
Tipologia CRIS:
1.1.01 Articoli/Saggi in rivista - Journal Articles/Essays
Elenco autori:
Horejšová, Markéta; Vitali, Sebastiano; Kopa, Miloš; Moriggia, Vittorio
Autori di Ateneo:
MORIGGIA Vittorio
VITALI Sebastiano
Link alla scheda completa:
https://aisberg.unibg.it/handle/10446/163698
Link al Full Text:
https://aisberg.unibg.it/retrieve/handle/10446/163698/377708/Horej%BFov%E12020_Article_EvaluationOfScenarioReductionA.pdf
Pubblicato in:
COMPUTATIONAL MANAGEMENT SCIENCE
Journal
  • Ricerca

Ricerca

Settori


Settore SECS-S/06 - Metodi mat. dell'economia e Scienze Attuariali e Finanziarie
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 26.1.3.0