Skip to Main Content (Press Enter)

Logo UNIBG
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNIBG

|

UNI-FIND

unibg.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

RGB-D Sensors as Marker-Less MOCAP Systems: A Comparison Between Microsoft Kinect V2 and the New Microsoft Kinect Azure

Contributo in Atti di convegno
Data di Pubblicazione:
2021
Citazione:
(2021). RGB-D Sensors as Marker-Less MOCAP Systems: A Comparison Between Microsoft Kinect V2 and the New Microsoft Kinect Azure . Retrieved from http://hdl.handle.net/10446/203287
Abstract:
Marker-less motion capture (MOCAP) systems based on consumer technology simplify the analysis of movements in several research fields such as industry, healthcare and sports. Even if the marker-less MOCAP systems have performances with precision and accuracy lower than the marker-based MOCAP solutions, their low cost and ease of use make them the most suitable tools for full-body movements analysis. The most interesting category is relative to the use of RGB-D devices. This research work aims to compare the performances of the last two generations of Kinect devices as marker-less MOCAP systems: Microsoft Kinect v2 and Azure devices. To conduct the tests, a list of specific movements is acquired and evaluated. This work measures the improvements of the Azure in tracking human body movements. The gathered results are presented and discussed by evaluating performances and limitations of both marker-less MOCAP systems. Conclusions and future developments are shown and discussed.
Tipologia CRIS:
1.4.01 Contributi in atti di convegno - Conference presentations
Elenco autori:
Rosa, Benedetta; COLOMBO ZEFINETTI, Filippo; Vitali, Andrea; Regazzoni, Daniele
Autori di Ateneo:
REGAZZONI Daniele
VITALI Andrea
Link alla scheda completa:
https://aisberg.unibg.it/handle/10446/203287
Link al Full Text:
https://aisberg.unibg.it/retrieve/handle/10446/203287/474266/Rosa2021_Chapter_RGB-DSensorsAsMarker-LessMOCAP.pdf
Titolo del libro:
Advances in Simulation and Digital Human Modeling. Proceedings of the AHFE 2021 Virtual Conferences on Human Factors and Simulation, and Digital Human Modeling and Applied Optimization, July 25-29, 2021, USA
Pubblicato in:
LECTURE NOTES IN NETWORKS AND SYSTEMS
Series
  • Ricerca

Ricerca

Settori


Settore ING-IND/15 - Disegno e Metodi dell'Ingegneria Industriale
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.12.1.0