Skip to Main Content (Press Enter)

Logo UNIBG
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Attività
  • Competenze

UNI-FIND
Logo UNIBG

|

UNI-FIND

unibg.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Attività
  • Competenze
  1. Pubblicazioni

Model-based clustering with sparse matrix mixture models

Contributo in Atti di convegno
Data di Pubblicazione:
2021
Citazione:
(2021). Model-based clustering with sparse matrix mixture models . Retrieved from https://hdl.handle.net/10446/269568
Abstract:
In recent years we are witnessing to an increased attention towards methods for clustering matrix-valued data. In this framework, matrix Gaussian mixture models constitute a natural extension of the model-based clustering strategies. Regrettably, the overparametrization issues, already affecting the vector-valued framework in high-dimensional scenarios, are even more troublesome for matrix mixtures. In this work we introduce a sparse model-based clustering procedure conceived for the matrix-variate context. We introduce a penalized estimation scheme which, by shrinking some of the parameters towards zero, produces parsimonious solutions when the dimensions increase. Moreover it allows cluster-wise sparsity, possibly easing the interpretation and providing richer insights on the analyzed dataset.
Tipologia CRIS:
1.4.01 Contributi in atti di convegno - Conference presentations
Elenco autori:
Cappozzo, Andrea; Casa, Alessandro; Fop, Michael
Link alla scheda completa:
https://aisberg.unibg.it/handle/10446/269568
Link al Full Text:
https://aisberg.unibg.it/retrieve/handle/10446/269568/679442/Cappozzo%20et%20al_CLADAG_2021.pdf
Titolo del libro:
CLADAG 2021. Book of abstracts and short papers. 13th Scientific Meeting of the Classification and Data Analysis Group
Pubblicato in:
PROCEEDINGS E REPORT
Series
  • Ricerca

Ricerca

Settori


Settore SECS-S/01 - Statistica
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.0.0