Skip to Main Content (Press Enter)

Logo UNIBG
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNIBG

|

UNI-FIND

unibg.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

Alkali-Activated Slag as Sustainable Binder for Pervious Concrete and Structural Plaster: A Feasibility Study

Articolo
Data di Pubblicazione:
2024
Citazione:
(2024). Alkali-Activated Slag as Sustainable Binder for Pervious Concrete and Structural Plaster: A Feasibility Study [journal article - articolo]. In MATERIALS. Retrieved from https://hdl.handle.net/10446/277789
Abstract:
: In the realm of sustainable construction materials, the quest for low-environmental-impact binders has gained momentum. Addressing the global demand for concrete, several alternatives have been proposed to mitigate the carbon footprint associated with traditional Portland cement production. Despite technological advancements, property inconsistencies and cost considerations, the wholesale replacement of Portland cement remains a challenge. This study investigates the feasibility of using alkali-activated slag (AAS)-based binders for two specific applications: structural plaster and pervious concrete. The research aims to develop an M10-grade AAS plaster with a 28-day compressive strength of at least 10 MPa for the retrofitting of masonry buildings. The plaster achieved suitable levels of workability and applicability by trowel as well as a 28-day compressive strength of 10.8 MPa, and the level shrinkage was reduced by up to 45% through the inclusion of shrinkage-reducing admixtures. Additionally, this study explores the use of tunnel muck as a recycled aggregate in AAS pervious concrete, achieving a compressive strength up to 20 MPa and a permeability rate from 500 to 3000 mm/min. The relationship between aggregate size and the physical and mechanical properties of no-fines concretes usually used for cement-based pervious concrete was also confirmed. Furthermore, the environmental impacts of these materials, including their global warming potential (GWP) and gross energy requirement (GER), are compared to those of conventional mortars and concretes. The findings highlight that AAS materials reduce the GWP from 50 to 75% and the GER by about 10-30% compared to their traditional counterparts.
Tipologia CRIS:
1.1.01 Articoli/Saggi in rivista - Journal Articles/Essays
Elenco autori:
Coffetti, Denny; Rapelli, Simone; Coppola, Luigi
Autori di Ateneo:
COFFETTI Denny
COPPOLA Luigi
Link alla scheda completa:
https://aisberg.unibg.it/handle/10446/277789
Link al Full Text:
https://aisberg.unibg.it/retrieve/handle/10446/277789/715504/Alkali-Activated%20Slag%20as%20Sustainable%20Binder%20for%20Pervious%20Concrete%20and%20Structural%20Plaster-%20A%20Feasibility%20Study.pdf
Pubblicato in:
MATERIALS
Journal
  • Ricerca

Ricerca

Settori


Settore IMAT-01/A - Scienza e tecnologia dei materiali
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 26.1.3.0