Skip to Main Content (Press Enter)

Logo UNIBG
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNIBG

|

UNI-FIND

unibg.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

Empirical Bayes for the Ridge Penalty in Probit Models

Contributo in Atti di convegno
Data di Pubblicazione:
2025
Citazione:
(2025). Empirical Bayes for the Ridge Penalty in Probit Models . Retrieved from https://hdl.handle.net/10446/305491
Abstract:
Empirical Bayes is a popular procedure to fix hyperparameters in Bayesian models, with estimation often performed via maximization of the marginal likelihood. In the case of Bayesian probit models with independent homoscedastic Gaussian prior distribution, one might be interested in the estimation of the prior variance of the parameters. We develop an expectation-maximization algorithm to obtain maximum marginal likelihood estimates of this quantity, where the expectation step leverages recent implementations of the expectation propagation algorithm for Bayesian probit models. Importantly, the penalty in the Ridge probit models is a 1-to-1 function of such a variance. The performance is validated over synthetic data generated with different values of the hyperparameter of interest.
Tipologia CRIS:
1.4.01 Contributi in atti di convegno - Conference presentations
Elenco autori:
Fasano, Augusto; Rebaudo, Giovanni; Rimella, Lorenzo
Autori di Ateneo:
RIMELLA Lorenzo
Link alla scheda completa:
https://aisberg.unibg.it/handle/10446/305491
Titolo del libro:
Statistics for Innovation III. SIS 2025. Short Papers, Contributed Sessions 2. Italian Statistical Society Series on Advances in Statistics
Pubblicato in:
ITALIAN STATISTICAL SOCIETY SERIES ON ADVANCES IN STATISTICS
Series
  • Ricerca

Ricerca

Settori


Settore STAT-01/A - Statistica
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.8.0.1