Skip to Main Content (Press Enter)

Logo UNIBG
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNIBG

|

UNI-FIND

unibg.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

Modeling Multiple Node-Colored Networks with Partial Exchangeability

Contributo in Atti di convegno
Data di Pubblicazione:
2025
Citazione:
(2025). Modeling Multiple Node-Colored Networks with Partial Exchangeability . Retrieved from https://hdl.handle.net/10446/311835
Abstract:
To address the growing availability of complex network data, [3] introduced partially exchangeable stochastic block models for multi-layer networks using random partition priors based on hierarchical normalized completely random measures. With this approach, the layer division information carried by a node-colored multilayer network is induced by imposing the suitable distributional invariance to the prior, leading to a new and probabilistically coherent way of modeling complex networks. In this paper we leverage these models to analyze multiple node-colored networks.
Tipologia CRIS:
1.4.01 Contributi in atti di convegno - Conference presentations
Elenco autori:
Gaffi, Francesco
Autori di Ateneo:
GAFFI Francesco
Link alla scheda completa:
https://aisberg.unibg.it/handle/10446/311835
Titolo del libro:
Statistics for Innovation III. SIS 2025, Short Papers, Contributed Sessions 2
Pubblicato in:
ITALIAN STATISTICAL SOCIETY SERIES ON ADVANCES IN STATISTICS
Series
  • Ricerca

Ricerca

Settori


Settore STAT-01/A - Statistica
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.11.5.0