Skip to Main Content (Press Enter)

Logo UNIBG
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNIBG

|

UNI-FIND

unibg.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Insegnamenti

ANALISI MATEMATICA I - 95001

insegnamento
ID:
95001
Dettaglio:
SSD: ANALISI MATEMATICA Durata: 72 CFU: 9
Sede:
DALMINE
Url:
Dettaglio Insegnamento:
INGEGNERIA DELLE TECNOLOGIE PER LA SALUTE - 95-R/PERCORSO COMUNE Anno: 1
Anno:
2025
Course Catalogue:
https://unibg.coursecatalogue.cineca.it/af/2025?co...
  • Dati Generali
  • Syllabus
  • Corsi
  • Persone

Dati Generali

Periodo di attività

Primo Semestre (15/09/2025 - 20/12/2025)

Syllabus

Obiettivi Formativi

Al termine del corso lo studente possiederà una buona padronanza dei metodi e delle tecniche proprie dell’analisi matematica. In particolare, sarà in grado di calcolare limiti e derivate, utilizzare questi strumenti per studiare il comportamento di una funzione reale di variabile reale e tracciarne quindi un grafico qualitativo. Saprà inoltre utilizzare le principali tecniche per la determinazione della primitiva di una funzione e calcolare quindi integrali definiti. Conoscerà infine i principali criteri per lo studio della convergenza delle serie numeriche e degli integrali impropri.
Al fine di conoscere le potenzialità ed i limiti degli strumenti precedentemente descritti lo studente avrà inoltre una piena consapevolezza dei loro fondamenti teorici e saprà esprimerli con adeguata proprietà di linguaggio.

Prerequisiti

1. Geometria euclidea del piano: in particolare, i criteri di uguaglianza e di similitudine dei triangoli, i teoremi di Euclide e di Pitagora, le proprietà elementari dei poligoni e dei cerchi. Corrispondenza tra i numeri reali e i punti di una retta; intervalli, semirette; piano cartesiano; distanza tra due punti nel piano. Luoghi geometrici elementari del piano: retta (condizioni di parallelismo e di perpendicolarità), circonferenza, ellisse, parabola ed iperbole. 2. Potenze con esponente naturale, proprietà delle potenze; polinomi: divisibilità, regola di Ruffini, radici, fattorizzazione. Potenze con esponente razionale o reale: loro grafico e principali proprietà. Funzione esponenziale, suo grafico e sue principali proprietà. Logaritmo, suo grafico e sue principali proprietà. 3. Equazioni e disequazioni di primo e di secondo grado; sistemi di equazioni e di disequazioni. 4. Equazioni e disequazioni irrazionali; con esponenziali, logaritmi e valore assoluto. 5. Trigonometria: misura in radianti di un angolo; identità e relazioni fondamentali, angoli notevoli; grafici di seno, coseno, tangente; equazioni e disequazioni con funzioni trigonometriche.


Metodi didattici

Il corso prevede lezioni frontali (60 ore) ed esercitazioni e tutorato (36). Lo studente è stimolato a partecipare in modo attivo a tutte le attività.


Verifica Apprendimento

La prova d’esame vuole verificare il raggiungimento da parte dello studente degli obiettivi formativi previsti dal corso. In particolare:
- padronanza dei metodi e delle tecniche sviluppate nel corso
- consapevolezza dei loro fondamenti teorici
- adeguatezza del linguaggio utilizzato.
Possono accedere all’esame di Analisi Matematica solo gli studenti in regola con l’OFA in matematica.
L’esame prevede una prova pratica ed una teorica, entrambe obbligatorie.
La prova pratica ha forma scritta, e consiste nella risoluzione di 4/6 esercizi che assegnano ciascuno un punteggio precisato all’inizio di ogni prova.
Anche la prova teorica ha forma scritta, si tiene subito dopo la prova pratica, e consiste in 3/4 domande in cui si valuta la conoscenza di definizioni, esempi, enunciati di teoremi, dimostrazioni. Sono tenute in considerazione anche la pertinenza della risposta rispetto alla domanda, la capacità di sintesi, la proprietà di linguaggio. La commissione si riserva inoltre di risentire qualsiasi studente dopo la correzione delle prove scritte, nel caso ritenga necessario acquisire ulteriori elementi di valutazione.
Gli studenti che nell’anno accademico in corso risultano iscritti al primo anno possono sostituire la prova d'esame con due prove in itinere. Potranno sostenere la prima prova in itinere anche gli studenti che avessero ancora da assolvere l’OFA di matematica. La prima prova in itinere si tiene a metà corso, e riguarda la prima metà del programma. La seconda riguarda la seconda parte del programma (comprendente i prerequisiti contenuti nella prima parte) e si tiene in concomitanza con il primo appello completo invernale.
Le due prove in itinere hanno la stessa modalità della prova completa. Si accede alla seconda prova con un punteggio minimo di 15 nella prima prova.
Nel primo appello invernale, lo studente che abbia superato la prima prova in itinere è libero di decidere se sostenere la seconda prova in itinere oppure la prova completa.

Contenuti

1. Numeri reali.
2. Limiti di successioni.
3. Serie.
4. Limiti e continuità di funzioni.
5. Derivate.
6. Primitive e Integrali definiti.
7. Integrali generalizzati

Risorse Online

  • Materiali didattici online (e-learning)
  • Leganto - Testi d'esame

Corsi

Corsi

INGEGNERIA DELLE TECNOLOGIE PER LA SALUTE - 95-R 
Laurea
3 anni
No Results Found

Persone

Persone

GIGANTE Giacomo
Settore MATH-03/A - Analisi matematica
Gruppo 01/MATH-03 - ANALISI MATEMATICA, PROBABILITÀ E STATISTICA MATEMATICA
AREA MIN. 01 - Scienze matematiche e informatiche
Professori Ordinari
No Results Found
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.12.1.0