Skip to Main Content (Press Enter)

Logo UNIBG
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNIBG

|

UNI-FIND

unibg.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

Semi-supervised learning of dynamical systems: a preliminary study

Contributo in Atti di convegno
Data di Pubblicazione:
2018
Citazione:
(2018). Semi-supervised learning of dynamical systems: a preliminary study . Retrieved from http://hdl.handle.net/10446/131600
Abstract:
System identification has, in recent years, drawn insightful inspirations from techniques and concepts of the statistical learning research area. Examples of this consist in the widely adoption of regularization and kernels methods, in order to better condition the identification problem. By pursuing the same purpose, we introduce the concept of semi-supervised learning to tackle the system identification challenge. The problem, casted into the framework of the Reproducing Kernel Hilbert Spaces, leads to a new regularization technique, called manifold regularization. An application to the identification of a NFIR model is carried out, and a comparison with the standard Tikhonov regularization technique is shown.
Tipologia CRIS:
1.4.01 Contributi in atti di convegno - Conference presentations
Elenco autori:
Mazzoleni, Mirko; Formentin, Simone; Scandella, Matteo; Previdi, Fabio
Autori di Ateneo:
MAZZOLENI Mirko
PREVIDI Fabio
SCANDELLA Matteo
Link alla scheda completa:
https://aisberg.unibg.it/handle/10446/131600
Titolo del libro:
2018 European Control Conference (ECC)
Pubblicato in:
EUROPEAN CONTROL CONFERENCE
Series
  • Ricerca

Ricerca

Settori


Settore ING-INF/04 - Automatica
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 26.1.3.0