Skip to Main Content (Press Enter)

Logo UNIBG
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Attività
  • Competenze

UNI-FIND
Logo UNIBG

|

UNI-FIND

unibg.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Attività
  • Competenze
  1. Pubblicazioni

Automatic Segmentation of Kidneys using Deep Learning for Total Kidney Volume Quantification in Autosomal Dominant Polycystic Kidney Disease

Articolo
Data di Pubblicazione:
2017
Citazione:
(2017). Automatic Segmentation of Kidneys using Deep Learning for Total Kidney Volume Quantification in Autosomal Dominant Polycystic Kidney Disease [journal article - articolo]. In SCIENTIFIC REPORTS. Retrieved from http://hdl.handle.net/10446/140298
Abstract:
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most common inherited disorder of the kidneys. It is characterized by enlargement of the kidneys caused by progressive development of renal cysts, and thus assessment of total kidney volume (TKV) is crucial for studying disease progression in ADPKD. However, automatic segmentation of polycystic kidneys is a challenging task due to severe alteration in the morphology caused by non-uniform cyst formation and presence of adjacent liver cysts. In this study, an automated segmentation method based on deep learning has been proposed for TKV computation on computed tomography (CT) dataset of ADPKD patients exhibiting mild to moderate or severe renal insufficiency. The proposed method has been trained (n = 165) and tested (n = 79) on a wide range of TKV (321.2-14,670.7 mL) achieving an overall mean Dice Similarity Coefficient of 0.86 ± 0.07 (mean ± SD) between automated and manual segmentations from clinical experts and a mean correlation coefficient (ρ) of 0.98 (p < 0.001) for segmented kidney volume measurements in the entire test set. Our method facilitates fast and reproducible measurements of kidney volumes in agreement with manual segmentations from clinical experts.
Tipologia CRIS:
1.1.01 Articoli/Saggi in rivista - Journal Articles/Essays
Elenco autori:
Sharma, Kanishka; Rupprecht, Christian; Caroli, Anna; Aparicio, Maria Carolina; Remuzzi, Andrea; Baust, Maximilian; Navab, Nassir
Autori di Ateneo:
REMUZZI Andrea
Link alla scheda completa:
https://aisberg.unibg.it/handle/10446/140298
Link al Full Text:
https://aisberg.unibg.it/retrieve/handle/10446/140298/310442/41598_2017_Article_1779.pdf
Pubblicato in:
SCIENTIFIC REPORTS
Journal
  • Ricerca

Ricerca

Settori


Settore ING-IND/34 - Bioingegneria Industriale
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0