Skip to Main Content (Press Enter)

Logo UNIBG
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNIBG

|

UNI-FIND

unibg.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

Piecewise nonlinear regression with data augmentation

Contributo in Atti di convegno
Data di Pubblicazione:
2021
Citazione:
(2021). Piecewise nonlinear regression with data augmentation . Retrieved from http://hdl.handle.net/10446/193750
Abstract:
Piecewise regression represents a powerful tool to derive accurate yet modular models describing complex phenomena or physical systems. This paper presents an approach for learning PieceWise NonLinear (PWNL) functions in both a supervised and semi-supervised setting. We further equip the proposed technique with a method for the automatic generation of additional unsupervised data, which are leveraged to improve the overall accuracy of the estimate. The performance of the proposed approach is preliminarily assessed on two simple simulation examples, where we show the benefits of using nonlinear local models and artificially generated unsupervised data.
Tipologia CRIS:
1.4.01 Contributi in atti di convegno - Conference presentations
Elenco autori:
Mazzoleni, Mirko; Breschi, Valentina; Formentin, Simone
Autori di Ateneo:
MAZZOLENI Mirko
Link alla scheda completa:
https://aisberg.unibg.it/handle/10446/193750
Link al Full Text:
https://aisberg.unibg.it/retrieve/handle/10446/193750/447962/2021%20IFAC%20SYSID%20-%20PWNL%20paper.pdf
Titolo del libro:
19th IFAC Symposium on System Identification SYSID 2021, Padova, Italy, 13-16 July 2021
Pubblicato in:
IFAC-PAPERSONLINE
Series
  • Ricerca

Ricerca

Settori


Settore ING-INF/04 - Automatica
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.8.0.1