Skip to Main Content (Press Enter)

Logo UNIBG
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNIBG

|

UNI-FIND

unibg.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

Almost positive kernels on compact Riemannian manifolds

Articolo
Data di Pubblicazione:
2022
Citazione:
(2022). Almost positive kernels on compact Riemannian manifolds [journal article - articolo]. In MATHEMATISCHE ZEITSCHRIFT. Retrieved from http://hdl.handle.net/10446/226849
Abstract:
We show how to build a kernel K_X(x, y) = \Sigma_(m=0)^X h(lambda_(m)/lambda_(X))phi_(m)(x)phi_(m)(y) on a compact Riemannian manifold M, which is positive up to a negligible error and such that K_X(x, x) approximate to X. Here 0 = lambda_(0) <= lambda_(1) <= ... are the eigenvalues of the Laplace-Beltrami operator on M, listed with repetitions, and phi_(0), phi_(1), ... an associated system of eigenfunctions, forming an orthonormal basis of L^2(M). The function h is smooth up to a certain minimal degree, even, compactly supported in [-1, 1] with h(0) = 1, and K_X(x, y) turns out to be an approximation to the identity.
Tipologia CRIS:
1.1.01 Articoli/Saggi in rivista - Journal Articles/Essays
Elenco autori:
Gariboldi, Bianca Maria; Gigante, Giacomo
Autori di Ateneo:
GARIBOLDI Bianca Maria
GIGANTE Giacomo
Link alla scheda completa:
https://aisberg.unibg.it/handle/10446/226849
Link al Full Text:
https://aisberg.unibg.it/retrieve/handle/10446/226849/539404/Gariboldi-Gigante2022_Article_AlmostPositiveKernelsOnCompact.pdf
Pubblicato in:
MATHEMATISCHE ZEITSCHRIFT
Journal
  • Ricerca

Ricerca

Settori


Settore MAT/05 - Analisi Matematica
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.8.0.1