Skip to Main Content (Press Enter)

Logo UNIBG
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNIBG

|

UNI-FIND

unibg.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

Dense Temporal Subgraphs in Protein-Protein Interaction Networks

Contributo in Atti di convegno
Data di Pubblicazione:
2022
Citazione:
(2022). Dense Temporal Subgraphs in Protein-Protein Interaction Networks . Retrieved from https://hdl.handle.net/10446/234197
Abstract:
Temporal networks have been successfully applied to represent the dynamics of protein-protein interactions. In this paper we focus on the identification of dense subgraphs in temporal protein-protein interaction networks, a relevant problem to find group of proteins related to a given functionality. We consider a drawback of an existing approach for this problem that produce large time intervals over which temporal subgraphs are defined. We propose a problem to deal with this issue and we design (1) an exact algorithm based on dynamic programming which solves the problem in polynomial time and (2) a heuristic, based on a segmentation of the time domain and the computation of a refinement. The experimental results we present on seven protein-protein interaction networks show that in many cases our heuristic is able to reduce the time intervals with respect to those computed by the existing methods.
Tipologia CRIS:
1.4.01 Contributi in atti di convegno - Conference presentations
Elenco autori:
Dondi, Riccardo; Hosseinzadeh, Mohammad Mehdi; Zoppis, Italo
Autori di Ateneo:
DONDI Riccardo
HOSSEINZADEH Mohammad Mehdi
Link alla scheda completa:
https://aisberg.unibg.it/handle/10446/234197
Titolo del libro:
Computational Science – ICCS 2022. 22nd International Conference, London, UK, June 21–23, 2022, Proceedings, Part II
Pubblicato in:
LECTURE NOTES IN COMPUTER SCIENCE
Series
  • Ricerca

Ricerca

Settori


Settore INF/01 - Informatica
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.8.0.1