Skip to Main Content (Press Enter)

Logo UNIBG
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Attività
  • Competenze

UNI-FIND
Logo UNIBG

|

UNI-FIND

unibg.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Attività
  • Competenze
  1. Pubblicazioni

Unsupervised Video Anomaly Detection with Diffusion Models Conditioned on Compact Motion Representations

Contributo in Atti di convegno
Data di Pubblicazione:
2023
Citazione:
(2023). Unsupervised Video Anomaly Detection with Diffusion Models Conditioned on Compact Motion Representations . Retrieved from https://hdl.handle.net/10446/260622
Abstract:
This paper aims to address the unsupervised video anomaly detection (VAD) problem, which involves classifying each frame in a video as normal or abnormal, without any access to labels. To accomplish this, the proposed method employs conditional diffusion models, where the input data is the spatiotemporal features extracted from a pre-trained network, and the condition is the features extracted from compact motion representations that summarize a given video segment in terms of its motion and appearance. Our method utilizes a data-driven threshold and considers a high reconstruction error as an indicator of anomalous events. This study is the first to utilize compact motion representations for VAD and the experiments conducted on two large-scale VAD benchmarks demonstrate that they supply relevant information to the diffusion model, and consequently improve VAD performances w.r.t the prior art. Importantly, our method exhibits better generalization performance across different datasets, notably outperforming both the state-of-the-art and baseline methods. The code of our method is available HERE
Tipologia CRIS:
1.4.01 Contributi in atti di convegno - Conference presentations
Elenco autori:
Tur, Anil Osman; Dall'Asen, Nicola; Beyan, Cigdem; Ricci, Elisa
Link alla scheda completa:
https://aisberg.unibg.it/handle/10446/260622
Titolo del libro:
Image Analysis and Processing – ICIAP 2023. 22nd International Conference, ICIAP 2023, Udine, Italy, September 11–15, 2023, Proceedings, Part II
Pubblicato in:
LECTURE NOTES IN COMPUTER SCIENCE
Series
  • Ricerca

Ricerca

Settori


Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0