Skip to Main Content (Press Enter)

Logo UNIBG
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNIBG

|

UNI-FIND

unibg.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

Filling the Gaps: Predicting Missing Joints of Human Poses Using Denoising Autoencoders

Contributo in Atti di convegno
Data di Pubblicazione:
2019
Citazione:
(2019). Filling the Gaps: Predicting Missing Joints of Human Poses Using Denoising Autoencoders . Retrieved from https://hdl.handle.net/10446/260634
Abstract:
State of the art pose estimators are able to deal with different challenges present in real-world scenarios, such as varying body appearance, lighting conditions and rare body poses. However, when body parts are severely occluded by objects or other people, the resulting poses might be incomplete, negatively affecting applications where estimating a full body pose is important (e.g. gesture and pose-based behavior analysis). In this work, we propose a method for predicting the missing joints from incomplete human poses. In our model we consider missing joints as noise in the input and we use an autoencoder-based solution to enhance the pose prediction. The method can be easily combined with existing pipelines and, by using only 2D coordinates as input data, the resulting model is small and fast to train, yet powerful enough to learn a robust representation of the low dimensional domain. Finally, results show improved predictions over existing pose estimation algorithms.
Tipologia CRIS:
1.4.01 Contributi in atti di convegno - Conference presentations
Elenco autori:
Carissimi, Nicolò; Rota, Paolo; Beyan, Cigdem; Murino, Vittorio
Link alla scheda completa:
https://aisberg.unibg.it/handle/10446/260634
Titolo del libro:
Computer Vision – ECCV 2018 Workshops: Munich, Germany, September 8-14, 2018, Proceedings, Part II
Pubblicato in:
LECTURE NOTES IN COMPUTER SCIENCE
Series
  • Ricerca

Ricerca

Settori


Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.8.0.1