Skip to Main Content (Press Enter)

Logo UNIBG
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Attività
  • Competenze

UNI-FIND
Logo UNIBG

|

UNI-FIND

unibg.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Attività
  • Competenze
  1. Pubblicazioni

Clustering blood donors via mixtures of product partition models with covariates

Articolo
Data di Pubblicazione:
2024
Citazione:
(2024). Clustering blood donors via mixtures of product partition models with covariates [journal article - articolo]. In BIOMETRICS. Retrieved from https://hdl.handle.net/10446/265309
Abstract:
Motivated by the problem of accurately predicting gap times between successive blood donations, we present here a general class of Bayesian nonparametric models for clustering. These models allow for the prediction of new recurrences, accommodating covariate information that describes the personal characteristics of the sample individuals. We introduce a prior for the random partition of the sample individuals, which encourages two individuals to be co-clustered if they have similar covariate values. Our prior generalizes product partition models with covariates (PPMx) models in the literature, which are defined in terms of cohesion and similarity functions. We assume cohesion functions that yield mixtures of PPMx models, while our similarity functions represent the denseness of a cluster. We show that including covariate information in the prior specification improves the posterior predictive performance and helps interpret the estimated clusters in terms of covariates in the blood donation application.
Tipologia CRIS:
1.1.01 Articoli/Saggi in rivista - Journal Articles/Essays
Elenco autori:
Argiento, Raffaele; Corradin, Riccardo; Guglielmi, Alessandra; Lanzarone, Ettore
Autori di Ateneo:
ARGIENTO Raffaele
LANZARONE Ettore
Link alla scheda completa:
https://aisberg.unibg.it/handle/10446/265309
Link al Full Text:
https://aisberg.unibg.it/retrieve/handle/10446/265309/665824/ujad021.pdf
Pubblicato in:
BIOMETRICS
Journal
  • Ricerca

Ricerca

Settori (2)


Settore ING-IND/34 - Bioingegneria Industriale

Settore SECS-S/01 - Statistica
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.0.0