Skip to Main Content (Press Enter)

Logo UNIBG
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNIBG

|

UNI-FIND

unibg.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

Integrating Biological-Informed Recurrent Neural Networks for Glucose-Insulin Dynamics Modeling

Contributo in Atti di convegno
Data di Pubblicazione:
2025
Citazione:
(2025). Integrating Biological-Informed Recurrent Neural Networks for Glucose-Insulin Dynamics Modeling . Retrieved from https://hdl.handle.net/10446/305205
Abstract:
Type 1 Diabetes (T1D) management is a complex task due to many variability factors. Artificial Pancreas (AP) systems have alleviated patient burden by automating insulin delivery through advanced control algorithms. However, the effectiveness of these systems depends on accurate modeling of glucose-insulin dynamics, which traditional mathematical models often fail to capture due to their inability to adapt to patient-specific variations. This study introduces a Biological-Informed Recurrent Neural Network (BI-RNN) framework to address these limitations. The BI-RNN leverages a Gated Recurrent Units (GRU) architecture augmented with physics-informed loss functions that embed physiological constraints, ensuring a balance between predictive accuracy and consistency with biological principles. The framework is validated using the commercial UVA/Padova simulator, outperforming traditional linear models in glucose prediction accuracy and reconstruction of unmeasured states, even under circadian variations in insulin sensitivity. The results demonstrate the potential of BI-RNN for personalized glucose regulation and future adaptive control strategies in AP systems.
Tipologia CRIS:
1.4.01 Contributi in atti di convegno - Conference presentations
Elenco autori:
De Carli, Stefano; Licini, Nicola; Previtali, Davide; Previdi, Fabio; Ferramosca, Antonio
Autori di Ateneo:
DE CARLI Stefano
FERRAMOSCA Antonio
PREVIDI Fabio
PREVITALI Davide
Link alla scheda completa:
https://aisberg.unibg.it/handle/10446/305205
Link al Full Text:
https://aisberg.unibg.it/retrieve/handle/10446/305205/890076/Integrating%20Biological-Informed%20Recurrent.pdf
Titolo del libro:
1st IFAC Workshop on Engineering Diabetes Technologies EDT 2025. Valencia, Spain, May 8 – 9 2025, Proceedings
Pubblicato in:
IFAC-PAPERSONLINE
Series
Progetto:
ANTHEM - AdvaNced Technologies for Human-centrEd Medicine
  • Ricerca

Ricerca

Settori


Settore IINF-04/A - Automatica
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.8.0.1