Skip to Main Content (Press Enter)

Logo UNIBG
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNIBG

|

UNI-FIND

unibg.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

Computational Benchmark Study in Spatio-Temporal Statistics With a Hands-On Guide to Optimise R

Articolo
Data di Pubblicazione:
2025
Citazione:
(2025). Computational Benchmark Study in Spatio-Temporal Statistics With a Hands-On Guide to Optimise R [journal article - articolo]. In ENVIRONMETRICS. Retrieved from https://hdl.handle.net/10446/311826
Abstract:
This study provides a comprehensive evaluation of the computational performance of R, MATLAB, Python, and Julia for spatial and spatio-temporal modelling, focusing on high-dimensional datasets typical in geospatial statistical analysis. We benchmark each language across key tasks, including matrix manipulations and transformations, iterative programming routines, and Input/Output processes, all of which are critical in environmetrics. The results demonstrate that MATLAB excels in matrix-based computations, while Julia consistently delivers competitive performance across a wide range of tasks, establishing itself as a robust, open-source alternative. Python, when combined with libraries like NumPy, shows strength in specific numerical operations, offering versatility for general-purpose programming. R, despite its slower default performance in raw computations, proves to be highly adaptable; by linking to optimized libraries like OpenBLAS or MKL and integrating C++ with packages like Rcpp, R achieves significant performance gains, becoming competitive with the other languages. This study also provides practical guidance for researchers to optimize R for geospatial data processing, offering insights to support the selection of the most suitable language for specific modelling requirements.
Tipologia CRIS:
1.1.01 Articoli/Saggi in rivista - Journal Articles/Essays
Elenco autori:
Tedesco, Lorenzo; Rodeschini, Jacopo; Otto, Philipp
Autori di Ateneo:
TEDESCO Lorenzo
Link alla scheda completa:
https://aisberg.unibg.it/handle/10446/311826
Link al Full Text:
https://aisberg.unibg.it/retrieve/handle/10446/311826/912998/Environmetrics+-+2025+-+Tedesco+-+Computational+Benchmark+Study+in+Spatio%BFTemporal+Statistics+With+a+Hands%BFOn+Guide+to_compressed.pdf
Pubblicato in:
ENVIRONMETRICS
Journal
  • Ricerca

Ricerca

Settori


Settore STAT-01/B - Statistica per la ricerca sperimentale e tecnologica
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 26.1.3.0